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Sample Size Recommendations for Continuous-Time Models: 
Compensating Shorter Time Series with Larger Numbers of Persons and Vice Versa  
Martin Hecht 1 and Steffen Zitzmann2 

1Humboldt-Universität zu Berlin; 2University of Tübingen  

ABSTRACT 
Autoregressive modeling has traditionally been concerned with time-series data from one unit (N = 1). For 
short time series (T < 50), estimation performance problems are well studied and documented. Fortunately, 
in psychological and social science research, besides T, another source of information is often available for 
model estimation, that is, the persons (N > 1). In this work, we illustrate the N/T compensation effect: With an 
increasing number of persons N at constant T, the model estimation performance increases, and vice versa, 
with an increasing number of time points T at constant N, the performance increases as well. Based on these 
observations, we develop sample size recommendations in the form of easily accessible N/T heatmaps for 
two popular autoregressive continuous-time models.   

KEYWORDS 
Continuous-time modeling; 
intensive longitudinal data; 
sample size; time series   

Modeling intensive longitudinal data is clearly a challenge that 
more and more researchers face because intensive longitudi-
nal methods, such as the experience sampling method (ESM), 
ecological momentary assessment (EMA), and ambulatory 
assessment (AA), become more and more popular. These 
methods usually produce unequally spaced data with varying 
time interval lengths between successive measurement occa-
sions. One natural choice for this kind of data is continuous- 
time modeling because an underlying continuous process is 
assumed of which the measurements at discrete points in time 
are snapshots (Hecht et al., 2019). 

Continuous-time models belong to the broad class of auto-
regressive models which are very popular in economic 
research and econometrics to analyze time-series data such 
as gross national products, sales prices of houses, number of 
passengers, market shares of toothpastes, and chemical pro-
cess concentrations (Bisgaard & Kulahci, 2011, Chapter 1.2), 
to name just a few examples. Usually, a large number of 
observations (i.e., time points T) are available in these 
research areas. In psychological research, however, the num-
ber of time points is often rather small because repeatedly 
obtaining data from a person is more cost-intensive than, for 
example, gathering the market price of a stock. Unfortunately, 
short time series are a known issue for model estimation as 
numerous studies have shown (e.g., Arnau & Bono, 2001; 
DeCarlo & Tryon, 1993; Huitema & McKean, 1991, 1994; 
Krone et al., 2017; Solanas et al., 2010). The general finding 
is that estimation performance increases with an increasing 
number of time points. For instance, Krone et al. (2017) 
studied the estimation performance of the autoregressive para-
meter for a range of T between 10 and 100 and found that 

“… the bias becomes smaller as T increases …” (p. 10), the 
bias of the standard error of the autoregressive parameter 
decreases when T becomes larger (p. 12), “… the empirical 
rejection rate approaches the nominal α as the length of the 
time series increases …” (p. 13), and that the power of the 
estimated autoregressive parameter shows a positive relation 
to the size of T (p. 14). Recommendations on the minimum 
necessary number of time points for time-series analysis vary, 
however, there is considerable consensus that this minimum 
requirement is in the middle two-digit range, for instance, “… 
40 observations is often mentioned as the minimum number 
of observations for a time-series analysis” (Poole et al., 2002, 
p. 56), “… many models require at least 50 observations for 
accurate estimation (McCleary et al., 1980, p. 20).” (Jebb et al., 
2015, p. 3), “Most time-series experts suggest that the use of 
time-series analysis requires at least 50 observations in the 
time series.” (Warner, 1998, pp. 2–3). 

Whereas time-series analysis in economic research and 
econometrics is often concerned with a single unit, in the 
social sciences (e.g., psychology), we are commonly dealing 
with more than one, usually many, units (i.e., persons). Thus, 
besides time points, we have persons as another source of 
information for model estimation. In analogy to the well- 
proven positive effects of a larger number of time points T 
on estimation performance, it is reasonable to assume 
a similar effect for an increasing number of persons N. 
Assuming that persons are—at least to some degree—alike, 
adding persons can add information for the estimation of the 
parameters of autoregressive models. Thus, it would be pos-
sible to compensate for smaller T with larger N and vice versa. 
Such effects are described by Schultzberg and Muthén (2018) 
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and support for adding more information via increasing N 
and T is also suggested by Oud et al. (2018, p. 4) and Hecht 
et al. (2019, p. 528). 

The mechanism behind such compensation effects can 
be described from different angles.1 The assumption of 
a common probability distribution of individual para-
meters provides information, for instance, the range in 
which the individual parameters are concentrated. 
Because the individuals contribute information to the 
common distribution and this distribution, in turn, 
informs the individual parameter estimation, one person 
is to some extent informative for another. From 
a Bayesian perspective, the common distribution can be 
seen as a form of prior distribution. Viewed from 
a regularization perspective, the prior can regularize the 
model and thus attenuate overfitting issues (Bulteel et al., 
2018). 

In summary, the information that persons add for 
model estimation can be “connected” and therefore uti-
lized for better parameter estimation by introducing 
assumptions about the common distribution of individual 
parameters. This mechanism fuels the N/T compensation 
effect because increasing N and/or T leads to more such 
information. 

Purpose and scope 

In the present work, we investigate the performance of 
a univariate continuous-time autoregressive model as 
a function of N and T. The first objective is to demonstrate 
the suggested N/T compensation effect on estimation perfor-
mance. To this end, we present results from simulations with 
varying T for N = 1 and N > 1. The assumption for this 
demonstration was that persons are identical, that is, there is 
no between-person variation in any model parameters. 
The second objective is to derive sample size recommenda-
tions. As persons usually differ in their mean level, we present 
results for a continuous-time model including between- 
person variance in the process means. This is the continuous- 
time univariate version of the popular cross-lagged panel 
model (e.g., Kearney, 2017; Selig & Little, 2012) with random 
intercepts (Hamaker et al., 2015) and one of the building 
blocks for more complex models for unequally spaced ESM/ 
EMA/AA data analysis. Our results can be used as guidance 
for choosing an N/T combination with sufficient 
performance. 

The article is organized into the following sections. First, 
we briefly present the univariate continuous-time model. 
Second, we report results from a simulation study in which 
we varied the number of time points and the number of 
persons and assessed convergence rate, relative bias, and cov-
erage rate as estimation performance criteria. Finally, we 
conclude with a discussion of our work. Annotated R code 
for estimating the employed continuous-time models with the 

R package ctsem (Driver et al., 2017) is provided in the 
supplementary material. 

The univariate continuous-time model 

We adapt the continuous-time model formulation from Hecht 
and Zitzmann (2020) which is based on the work of Oud and 
Delsing (2010) and Hecht et al. (2019). Unequal-interval long-
itudinal designs involve responses of j ¼ 1; . . . ;N persons at 
several points in time, tp, with p ¼ 1; . . . ;T being a running 
index denoting the discrete time point and T being the num-
ber of time points. Time interval lengths Δp� 1 between time 
points are given by Δp� 1 ¼ tp � tp� 1 for all p � 2, and yjp is 
the value of person j on the variable y at time point p. The 
continuous-time model is given by: 

for p � 2; yjp ¼ a�Δp� 1
yjðp� 1Þ þ 1 � a�Δp� 1

� �
μ�j1 þ ωjðp� 1Þ ; (1)  

a�Δp� 1
¼ expðaΔp� 1Þ ; (2)  

μ�j1,N μ�1; σ
2�
1

� �
; (3)  

ωjðp� 1Þ,N 0; q�Δp� 1

� �
; (4)  

q�Δp� 1
¼ � expð2aΔp� 1Þ � 1

� �
q�1; (5) 

and for p ¼ 1; yj1 ,N μ�j1 þ μdev; σ
2
fw

� �
; (6) 

where a�Δp� 1 
are the discrete-time autoregressive effects that depend on 

the continuous-time auto-effect a and the time interval length 
(Equation 2)2; μ�j1 are the long-range person-specific process means 
which are normally distributed with mean μ�1 and variance σ2�

1

(Equation 3); ωjðp� 1Þ are the person- and time point-specific process 
error terms which are normally distributed with zero mean and var-
iance q�Δp� 1 

(Equation 4), with q�Δp� 1 
depending on the within-person 

long-range process variance q�1, the auto-effect a, and on the time 
interval length (Equation 5). The values at the first time point, yj1, are 
normally distributed with variance σ2

fw and mean μ�j1 þ μdev, where 
μdev is the deviation of the mean at the first time point from the overall 
process mean μ�1. Figure 1 illustrates this continuous-time model for 
three time points. For more explanations, examples, and illustrations of 
this (and other) continuous-time models see Hecht and Zitzmann 
(2020), Hecht et al. (2019), Hecht and Voelkle (2019), Driver et al. 
(2017), Driver and Voelkle (2018), and Voelkle et al. (2012). 

Simulation study 

Simulation design 

In our simulation study, we estimated continuous-time 
models for three scenarios: (1) one person (N = 1), (2) 
multiple identical persons (no between-person variation in 
process means; that is, intra-class correlation ICC = 0), and 

1We thank one anonymous reviewer for her or his elaborations. 
2In line with Oud and Delsing (2010) and Hecht et al. (2019) we use the asterisk symbol * to denote discrete-time parameters that can be calculated from 

continuous-time parameters. In the present article, we limited ourselves to first-order continuous-time models with auto-effects, a, in the range ( � 1; 0), 
which implies discrete-time autoregressive effects, a�Δp� 1

, in the range (0; 1). 
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(3) multiple persons who differ in individual process means 
(ICC = 0.50). For all scenarios, we varied the number of 
time points: T = 3, 4, 5, 7, 10, 15, 20, 30, 50, 75, 100, 150, 
or 250. For scenarios 2 and 3, we varied the number of 
persons as well: N = 5, 25, 50, 100, 250, 500, 1,000, or 
2,500, and fully crossed N and T, which resulted in 104 
N/T combinations. 

Data generation 

The data-generating model was the univariate continuous-time 
model described in Equations 1 to 6 and depicted in Figure 1. 
For all scenarios, the true parameter values were a ¼ � 0:40, 
μ�1¼ 1, q�1 ¼ 0:50, μdev¼ 1, and σ2

fw ¼ 0:50. In scenario 1 (one 
person) and 2 (multiple identical persons), there is no between- 
person variance in process means, therefore: μ�j1 ¼ μ�1. In sce-
nario 3, the true between-person variance in process means was 
σ2�
1 ¼ 0:50, implying an intra-class correlation of 

ICC ¼ σ2�
1=ðσ

2�
1 þ q�1Þ ¼ 0:50. The full data-generating model is: 

for scenarios 1 and 2; μ�j1 ¼ 1 ;

for scenario 3; μ�j1,N 1; 0:50ð Þ ; 

for p ¼ 1; yj1 ,N μ�j1 þ 1; 0:50
� �

;

for p � 2; Δp� 1,Uf0:20;0:40;0:60;0:80g ;

q�Δp� 1
¼ � exp½2ð� 0:40ÞΔp� 1� � 1

� �
0:50 ;

ωjðp� 1Þ,N 0; q�Δp� 1

� �
;

a�Δp� 1
¼ exp½ð� 0:40ÞΔp� 1� ;

yjp ¼ a�Δp� 1
yjðp� 1Þ þ 1 � a�Δp� 1

� �
μ�j1 þ ωjðp� 1Þ ;

where N denotes a normal and U a uniform distribution. 

Analysis 

We generated data sets and ran models for each N/T combina-
tion within each scenario until Nrepl = 1,000 models had con-
verged. All models were estimated using the frequentist branch 
(i.e., the maximum likelihood estimator) of the R package ctsem 
(R Core Team, 2019; Driver et al., 2019) which interfaces to 
OpenMx (Neale et al., 2016) and each model ran on one Intel 
Xeon Gold 5120 (2.20 GHz) CPU of a 64-bit Linux Debian 9 
“Stretch” computer. A model was considered as converged if the 
exit code was 0 and the standard errors of all parameters were 
unflawed.3 The analysis model resembled the data-generating 
model.4 For each N/T combination within each scenario, the 
following performance criteria were calculated: convergence rate 
as the quotient of converged and total models ran (in percent), 
relative parameter bias as the quotient of bias and the true 
parameter value (in percent), and coverage rate as the quotient 
of the number of the 95% confidence intervals covering the true 
parameter and the total number of replications. The latter two 
criteria are based on the converged models only. For a handy 
representation of results, we chose heatmaps with number of 
persons on the y-axis and number of time points on the x-axis. 
The cells contain the values of the performance criteria and are 
colored using a red-yellow-green continuum with red indicating 
poor, yellow fair, and green very good performance. 
Convergence rates � 75% were considered as poor, ¼ 90% 
as fair, and ¼ 100% as very good. The performance markers for 
relative bias and coverage rates were adapted from Muthén and 
Muthén (2002) who state that parameter biases should not 

Figure 1. The univariate continuous-time model with three time points. Model parameters that are estimated are set in light text color on a dark background. 

3OpenMx sometimes outputs no standard errors even when the exit code is 0. We considered such analyses with missing standard errors (or highly inflated 
standard errors > 1,000) for at least one parameter in the model as not converged as well because this points to estimation problems, and therefore such 
analyses are of the same low practical value for users as unconverged analyses. Still, with just 0.11% of all analyses, this was rarely the case. 
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exceed 10% and that coverage rates should remain between 0.91 
and 0.98 (pp. 605–606). Thus, we colored these values in yellow. 
Very good performance (green) is at 0% and 0.95, respectively. 
Relative biases � −20% and � 20% and coverage rates �
0.89 and ¼ 1.00 indicate poor performance (red). To integrate 
results, we aggregated over all heatmaps within each scenario by 
averaging the cell colors. This produced an overall performance 
heatmap for each scenario (Figure 2). 

Results 

Figure 2 shows the overall performance of the three scenarios: 
one person (N = 1) at the top, multiple identical persons 
(ICC = 0) in the center, and multiple different persons 
(ICC = 0.50) at the bottom. The overall performance of the 
continuous-time model estimation for one person is rather 
poor for up to 100 time points. For 250 time points, the 
performance is good. For the ICC = 0 scenario, the perfor-
mance becomes better with an increasing number of persons. 
For 25 persons, a good performance is already achieved for 15 
time points; for 50 persons, performance is good when there 
are at least 3 time points. Such an N/T compensation effect is 
present in the ICC = 0.50 scenario as well. However, the 
thresholds for a good performance are shifted to the upper 
right, indicated by more reddish cells in the lower left of the 
figure. This means that the performance worsens when the 
persons are not identical and a higher N/T combination is 
needed to achieve good performance. Specifically, for our 
ICC = 0.50 scenario, performance starts to be satisfied for 
N/T combinations of 2,500/3, 1,000/4, 500/5, 100/7, and 50/ 
10. In these figures, we again see the compensation effect: To 
achieve the same good performance, we can lower the number 
of persons while raising the number of time points or, con-
versely, we can decrease the number of time points but then 
need to increase the number of persons. 

Detailed results separately for performance criteria and 
model parameters are presented in Figures S1–S9 in the 
supplementary material. The convergence rate in the N = 
1 scenario is very good for 15 time points and more 
(Figure S1). Very good convergence rates were also 
achieved for essentially all N/T combinations in the 
ICC = 0 scenario (Figure S4), whereas the thresholds for 
very good convergence in the ICC = 0.50 scenario are 
roughly on a diagonal line from upper-left to lower-right 
(Figure S7). Of all parameters, the auto-effect is the one 
that is worst recovered. For N = 1, we observe very high 
relative bias for short time series and also for larger 
numbers of time points, relative bias is still not within 
the acceptable range (Figure S2). For five identical persons 
(ICC = 0), relative bias of the auto-effect reaches fair 
values for 50 time points or more. The relative bias is 
very good for all T values for a number of persons of 50 
or more (Figure S5). For different persons (ICC = 0.50), 
the threshold between poor and good performance is 

a roughly diagonal line from N = 1,000/T = 3 to N = 
25/T = 15 (Figure S8). The picture changes for the cover-
age rates. Here, the auto-effect is among the best perform-
ing parameters, whereas the within-person process 
variance and the within-person variance at the first time 
point show worst coverage rates. For N = 1, the coverage 
rates for the within-person process variance are poor for 
all T (Figure S3). This gets better for larger N: starting 
from 250 time points, coverage rates are very good in the 
ICC = 0 scenario (Figure S6). For the ICC = 0.50 scenario, 
diagonal lines indicate the thresholds where poor perfor-
mance turns into good performance (Figure S9). 

In summary, we demonstrated that for a constant num-
ber of time points, performance increases with an increas-
ing number of persons and, vice versa, for a constant 
number of persons, performance increases with an 
increasing number of time points. This is the N/T com-
pensation effect. 

Additional simulations 

In our simulation study, we used one set of true parameters. 
To investigate the dependence of results on true parameter 
values, we ran the simulation for the ICC = 0.50 scenario 
again, but this time varied the auto-effect a (� 1 vs. � 0.25) 
and the process mean μ�1 (� 1 vs. 3), yielding four parameter 
sets, set 1: a ¼ � 1/μ�1 ¼ � 1, set 2: a ¼ � 1/μ�1 ¼ 3, set 3: 
a ¼ � 0:25/μ�1 ¼ � 1, and set 4: a ¼ � 0:25/μ�1 ¼ 3. 
Procedures and analyses were as described above. Overall 
results for the four additional true parameter sets are shown 
in Figure 3. Detailed results are provided in the supplemen-
tary material (Figures S10–S21). 

The results show that the performance indeed depends on the 
true parameter values. For a low auto-effect (left panels in Figure 3), 
estimation performance is much better than for a high auto-effect 
(right panels). Whereas performance is good for N/T combinations 
of 100/4, 50/5, and 25/7 or higher for an auto-effect of � 1, the 
picture changes for auto-effects of � 0:25. Here, the thresholds for 
good performance are shifted to N/T combinations of 2,500/4, 
1000/5, and 500/7 or higher. With respect to the value of the 
process mean, there are only negligible performance differences. 

Further, it can be seen that a high auto-effect (sets 3 and 4) is 
associated with bad overall performance for some high N/T com-
binations, for example, for 2,500/50 and 2,500/100. Inspecting the 
detailed results (Figures S16–S21) suggests that this is mainly due to 
(very) low convergence rates and bad coverage rates. To explore the 
reason for this—in light of the N/T compensation effect surprising 
—result, we reran the simulations for these problematic N/T 
combinations, but used the true parameter values as starting values 
instead of the software’s default starting values. The performance 
then turned out to be very good (e.g., with convergence rates of 
100%) and this again fits perfectly in the picture of the N/T 
compensation effect. This outcome suggests that default starting 
values might be suboptimal for some situations. 

4Except for scenario 1 (N = 1) in which the within-person variance at the first time point had to be constrained equal to the within-person process variance 
for identification reasons. As the true values of both variances were equal in the data generation, this constraint does not penalize the model 
performance in scenario 1. 
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Sample size recommendations 

Although caution should be exercised when generalizing 
our findings beyond the conditions studied (see 
Discussion section), our findings are informative to guide 
study planning. We suggest to choose an N/T combination 
with overall very good performance (green squares in 
Figures 2 and 3). Depending on what is more difficult to 
obtain, researchers could choose a certain limited N and 
then compensate by increasing T, or choose a certain T 
and compensate with larger N. In addition, they should 
have a more fine-grained look at Figures S1–S21 (in the 
supplementary material) and check whether the parameters 
of main interest show the desired performance. This is  

especially important the closer the N/T combination comes to 
the red and yellow area. If accurate inferences for the para-
meters are imperative, we recommend to choose an N/T 
combination for which the coverage rates for the parameters 
of interest are close to .95 (green or nearly green cells in 
Figures S3, S6, S9, S12, S15, S18, and S21). For data scenarios 
and models not studied in the present work, we caution to 
use the presented results only as a rule of thumb and recom-
mend to additionally conduct tailored performance evalua-
tions for the targeted scenarios and models. Further, we 
need to emphasize that default starting values might not 
always be the optimal choice, especially in situations known 
to cause convergence issues (e.g., when the auto-effect is 

Figure 2. Overall performance (averaged over model parameters and performance criteria) depending on number of persons and number of time points for three 
scenarios (N = 1, ICC = 0, ICC = 0.50). The true auto-effect was a = –0.40 and the overall process mean was μ�1= 1. 
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high). In these situations, better starting values need to be 
chosen. 

Discussion 

In this article, we illustrated the N/T compensation effect for 
longitudinal data analysis with continuous-time models. Smaller 
T can be compensated with larger N, and vice versa, smaller N can 
be compensated with larger T. Besides illustrating this compensa-
tion effect, we gave sample size recommendations to reach suffi-
cient estimation performance for two popular continuous-time 
models. Therefore, this study joins in with numerous other studies 
on sample sizes that derive recommendations and exhibits, of 
course, similar limitations concerning generalizability. 

As with all such studies, generalizing beyond the inves-
tigated conditions is difficult. Although we heavily varied 
and fully crossed our factors of interest (N and T), we only 
considered a small number of sets of true parameter 
values, one assessment design, one estimation method/soft-
ware, and two models. However, these factors were chosen 
as to reflect common use cases and frequently encountered 
situations in practice. Still, other research suggests that the 
factors we kept constant influence estimation performance 
as well. For instance, different performances of different 
models are one result in the work of Schultzberg and 
Muthén (2018) and the estimation performance of the 

autocorrelation parameter has been shown to depend on 
the estimation method (Krone et al., 2017) and the size 
and sign of the autocorrelation parameter (DeCarlo & 
Tryon, 1993; Solanas et al., 2010). In our simulations, we 
also found a dependency of the estimation performance on 
the value of the auto-effect, with a high auto-effect being 
associated with worse performance than a low auto-effect. 
Besides main effects, interaction effects of such factors are 
also possible and likely to occur. For example, the sign and 
strength of the autoregressive effect can affect the estimate 
of the process mean, particularly in short time series, with 
stronger positive autoregressive effects making it harder to 
estimate the mean (Schuurman et al., 2015). 

Concerning generalizability to other models, we believe 
that the N/T compensation effect is inherent and utilizable 
in all longitudinal two-level models that include distributional 
assumptions of individual parameters. This is because the 
distribution connects the individual parameters to one 
another and thus individual information informs distribution 
parameters which, in turn, informs individual parameters. 
Further, the extent to which estimation performance profits 
by adding persons likely depends on the similarity of the 
persons. We speculate that higher similarity (characterized 
by a lower ICC) enhances the information that is added in 
by an additional person and thus improves performance. 
Future research could investigate this effect. 

Figure 3. Overall performance (averaged over model parameters and performance criteria) depending on number of persons and number of time points for four true 
parameter sets (ICC = 0.50). For a high auto-effect (sets 3 and 4), bad overall performance occurred for some high N/T combinations (e.g., for 2,500/50 and 2,500/ 
100). When using the true parameter values as starting values instead of the software’s default starting values, the performance was very good. 
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The overall performance of the continuous-time model in 
the N = 1 scenario was unsatisfactory for up to 100 time 
points and some parameters showed suboptimal performance 
on some criteria even for 250 time points. Thus, for our 
settings and model, the 50 time point rule of thumb from 
the N = 1 discrete-time time-series literature does not apply 
and needs to be adjusted upward. This is in line with a finding 
by Yu (2012) that bias is much more pronounced in contin-
uous-time models than in their discrete-time counterparts. 
More research on N = 1 continuous-time modeling should 
be conducted to derive more accurate sample size require-
ments for these models. 

Some coverage rates were quite bad, especially for low 
sample sizes. Reasons for this might lie in the way the 
confidence intervals were calculated (i.e., parameter �
1.96 � SE). Thus, the assumption is that a parameter has 
a normal distribution. According to the central limit theo-
rem (e.g., Box & Andersen, 1955), the parameter distribu-
tion rapidly converges to being asymptotically normally 
distributed with an increasing sample size for almost all 
parent distributions. For very small sample sizes, however, 
parameter distributions might deviate from the approxi-
mate normal distribution and therefore impair the perfor-
mance of the confidence intervals. Further, confidence 
intervals are also sensitive to parameter bias with elevated 
bias being associated with worse coverage rates. We recom-
mend to use only N/T combinations for which the coverage 
rates for the parameters of interest are close to .95 (green 
or nearly green cells in Figures S3, S6, and S9). If smaller 
sample sizes are required, one might consult literature on 
the robustness of confidence intervals (e.g., Dorfman, 1994; 
Rao et al., 2003; Royall & Cumberland, 1985) or choose 
other approaches to obtain confidence intervals that do not 
depend on the normality assumption (e.g., Carpenter & 
Bithell, 2000; DiCiccio & Efron, 1996; Hu & Yang, 2013; 
Toth & Somorcik, 2017). 

Further, our analysis model resembled the data-generating 
model. Negative effects of model misspecifications on estima-
tion performance in autoregressive modeling contexts have 
been shown, for example, by Tanaka and Maekawa (1984) and 
Kunitomo and Yamamoto (1985). In sum, this leaves enough 
material for future research on sample size effects in contin-
uous-time modeling. Such research is currently very sparse 
but, nonetheless, important because continuous-time models 
will most likely become even more prominent fueled by the 
rise of intensive longitudinal methods like ESM, EMA, 
and AA. 

To conclude, we have clearly carved out the N/T compen-
sation effect in longitudinal data analysis and made some first 
tentative sample size recommendations for continuous-time 
modeling. We hope that this will prove useful in guiding 
researchers to better plan their intensive longitudinal studies 
in the future. 
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